Decoherence Optimized Tilted-Angle Cross Polarization: A Novel Concept for Sensitivity-enhanced Solid-state NMR using Ultra-fast Magic Angle Spinning

2020 
Abstract Ultra-fast magic-angle spinning (UFMAS) at a MAS rate (ωR/2π) of 60 kHz or higher has dramatically improved the resolution and sensitivity of solid-state NMR (SSNMR). However, limited polarization transfer efficiency using cross-polarization (CP) between 1H and rare spins such as 13C still restricts the sensitivity and multi-dimensional applications of SSNMR using UFMAS. We propose a novel approach, which we call decoherence-optimized tilted-angle CP (DOTA CP), to improve CP efficiency with prolonged lifetime of 1H coherence in the spin-locked condition and efficient band-selective polarization transfer by incorporating off-resonance irradiation to 1H spins. 13C CP-MAS at ωR/2π of 70–90 kHz suggested that DOTA CP notably outperformed traditional adiabatic CP, a de-facto-standard CP scheme over the past decade, in sensitivity for the aliphatic-region spectra of 13C-labeled GB1 protein and N-formyl-Met-Leu-Phe samples by up to 1.4- and 1.2-fold, respectively. 1H-detected 2D 1H/13C SSNMR for the GB1 sample indicated the effectiveness of this approach in various multidimensional applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []