DNA microarrays immobilized on unmodified plastics in a microfluidic biochip for rapid typing of Avian Influenza Virus

2011 
Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on non-modified plastic surfaces. This one-step, cost-effective process provides very high immobilization and hybridization efficiencies and is applicable to many different types of polymers. Using this microarray fabrication technique, a portable cyclic olefin copolymer (COC) microarray device containing eight individually addressable microfluidic channels was developed for fast identification of Avian Influenza Virus (AIV) by DNA hybridization. This plastic biochip offers benefits of low fabrication cost and parallel processing of multiple samples, and could be used as a point-of-care device for clinical diagnostics and gene expression analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []