A multiscale quasilinear system for colloids deposition in porous media: Weak solvability and numerical simulation of a near-clogging scenario

2022 
Abstract We study the weak solvability of a macroscopic, quasilinear reaction–diffusion system posed in a 2 D porous medium which undergoes microstructural problems. The solid matrix of this porous medium is assumed to be made out of circles of not-necessarily uniform radius. The growth or shrinkage of these circles, which are governed by an ODE, has direct feedback to the macroscopic diffusivity via an additional elliptic cell problem. The reaction–diffusion system describes the macroscopic diffusion, aggregation, and deposition of populations of colloidal particles of various sizes inside a porous media made of prescribed arrangement of balls. The mathematical analysis of this two-scale problem relies on a suitable application of Schauder’s fixed point theorem which also provides a convergent algorithm for an iteration method to compute finite difference approximations of smooth solutions to our multiscale model. Numerical simulations illustrate the behavior of the local concentration of the colloidal populations close to clogging situations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []