Mid-Infrared InAs/InAsSb Superlattice nBn Photodetector Monolithically Integrated onto Silicon

2019 
Mid-infrared (MIR) silicon photonics holds the potential for realizing next generation ultracompact spectroscopic systems for applications in gas sensing, defense, and medical diagnostics. The direct epitaxial growth of antimonide-based compound semiconductors on silicon provides a promising approach for extending the wavelength of silicon photonics to the longer infrared range. This paper reports on the fabrication of a high performance MIR photodetector directly grown onto silicon by molecular beam epitaxy. The device exhibited an extended cutoff wavelength at ∼5.5 μm and a dark current density of 1.4 × 10–2 A/cm2 under 100 mV reverse bias at 200 K. A responsivity of 0.88 A/W and a specific detectivity in the order of 1.5 × 1010 Jones was measured at 200 K under 100 mV reverse bias operation. These results were achieved through the development of an innovative structure which incorporates a type-II InAs/InAsSb superlattice-based barrier nBn photodetector grown on a GaSb-on-silicon buffer layer. The diff...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    25
    Citations
    NaN
    KQI
    []