Drop impact upon micro- and nanostructured superhydrophobic surfaces

2009 
We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number \We and the roughness of the surface. At small \We, i.e. small impact velocity, the impact evolutions are similar for both types of substrates, exhibiting Fakir state, complete bouncing, partial rebouncing, trapping of an air bubble, jetting, and sticky vibrating water balls. At large \We, splashing impacts emerge forming several satellite droplets, which are more pronounced for the multiscale rough carbon nanofiber jungles. The results imply that the multiscale surface roughness at nanoscale plays a minor role in the impact events for small \We $\apprle 120$ but an important one for large \We $\apprge 120$. Finally, we find the effect of ambient air pressure to be negligible in the explored parameter regime \We $\apprle 150$
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []