Quantum dynamics of open many-qubit systems strongly coupled to a quantized electromagnetic field in dissipative cavities

2021 
We study quantum dynamics of many-qubit systems strongly coupled to a quantized electromagnetic cavity mode, in the presence of decoherence and dissipation for both fermions and cavity photons. The analytic solutions are derived for a broad class of open quantum systems in Lindblad approximation. They include identical qubits, an ensemble of qubits with a broad distribution of transition frequencies, and multi-level electron systems. Compact analytic solutions for time-dependent quantum state amplitudes and observables become possible with the use of the stochastic equation of evolution for the state vector. We show that depending on the initial quantum state preparation, the systems can evolve into a rich variety of entangled states with destructive or constructive interference between the qubits. In particular, dissipation in a cavity can drive the system into the dark states completely decoupled from the cavity modes. We also find the regimes in which multi-electron systems with a broad distribution of transition frequencies couple to the quantized cavity field as a giant collective dipole.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []