Chiral Proportions of Nepheline Originating from Low-Viscosity Alkaline Melts. A Pilot Study

2018 
Chromatographic interaction between infiltrating solutions of racemic mixtures of enantiomers and enantiomorphic minerals with chiral excess has been proposed as a scenario for the emergence of biomolecular homochirality. Enantiomer separation is supposed to be produced by different partition coefficients of both enantiomers with regard to crystal faces or walls of capillary tubes in the enantiomorphic mineral. Besides quartz, nepheline is the only common magmatic mineral with enantiomorphic symmetry. It crystallizes from SiO2-undersaturated melts with low viscosity and is a promising candidate for chiral enrichment by autocatalytic secondary nucleation. Under liquidus conditions, the dynamic viscosity of silicate melts is mainly a function of polymerization. Melts with low concentrations of SiO2 ( 7 wt%) are only slightly polymerized and hence are characterized by low viscosities. Such melts can ascend, intrude or extrude by turbulent flow. Fourteen volcanic and subvolcanic samples from alkaline provinces in Africa and Sweden were chemically analyzed. Polished thin sections containing fresh nepheline phenocrysts were etched with 1% hydrofluoric acid at 20 °C for 15 to 25 min. Nepheline crystals suitable for a statistical evaluation of their etch figures were found in four samples. Crystals with chiral etch figures are mainly not twinned. Their chiral proportions in grain percentages of single crystals are close to parity in three samples. Only one sample shows a slight chiral excess (41.67% L-type vs. 58.33% D-type) but at a low level of significance (15 vs. 21 crystals, respectively).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []