Oxidative stress with altered element content and decreased ATP level of erythrocytes in hepatocellular carcinoma and colorectal liver metastases

2008 
Our aim was to study the possible alterations of redox status (enzymatic and nonenzymatic parameters and metal elements) in erythrocytes of patients with hepatocellular carcinoma (HCC), colorectal liver metastases (CRLM) and benign liver neoplasms. The function of redox homeostasis is closely connected to the energy level of erythrocytes, therefore, the ATP level was also determined. Antioxidant parameters, enzyme activities of superoxide dismutase and glutathione peroxidase were estimated in the erythrocytes of 11 patients with benign tumour, 23 patients with primary malignant and 37 metastatic liver tumour patients and 30 age-matched and sex-matched healthy controls. Element content with inductively coupled plasma optical emission spectrometer and ATP level by the chemiluminometric method were also determined from the samples. Free radical intensity was significantly increased, whereas erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly decreased in the HCC and CRLM groups versus benign groups and controls. Se, Mn and Zn levels were lowered in HCC and CRLM groups versus benign and control groups. The content of Cu, Mg, Se and Zn changed significantly between HCC and CRLM groups. Similarly, ATP concentration decreased in HCC and CRLM versus controls and benign groups. The lowest levels of ATP and antioxidant enzyme activities were found in the case of CRLM patients. These results reveal an alteration in the ATP level of erythrocytes with concomitant changes in the antioxidant defence system in hepatic cancer patients. Altered redox homeostasis (oxidative damage) may lead to decreased ATP level and consequently may play an important role in primary carcinogenesis and generation of metastases, as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    19
    Citations
    NaN
    KQI
    []