Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair
2019
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly- l -lactic-acid (PLLA)/nano-hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differentiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic (d3D) 3D culture conditions at 7 and 21 days. The colonization rate of hMSCs and osteogenic differentiation were amplified by d3D when physical stimulation was provided by a perfusion bioreactor. Increase in dsDNA content (p
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
10
Citations
NaN
KQI