Back Analysis Procedure for Identification of Anisotropic Elastic Parameters of Overcored Rock Specimens

2017 
This paper presents a back analysis procedure for identification of the elastic parameters of transversely isotropic rock cores, containing an overcoring triaxial strain probe, from the strains measured during a biaxial test. A three-dimensional finite element model was developed to simulate the biaxial test on the overcored rock specimen and to compute the strains at the location of the strain gauges. Different optimisation algorithms were tested and the most suitable one was selected. The back analysis procedure was tested for identification of the five elastic parameters and the two orientation angles that characterise a transversely isotropic rock core. Despite that, with the developed methodology, convergence was reached and all those parameters could be identified, sensitivity analyses demonstrated that the results obtained were not stable, and therefore, they were not reliable. By introducing constrains based on common practice and previous experience, a stable and robust methodology was achieved: the three elastic parameters, E 1, E 2 and ν 2, are reliably identified using the value of G 2 calculated with Saint–Venant expression and a fixed value of ν 1, while the orientation parameters are obtained from observation of overcored rock. Analysis of the results shows that application of this methodology represents an enormous step forward when compared with the traditional use of isotropy. Besides, the methodology is general and can also be used with other types of overcoring equipment. The five elastic parameters and the two orientation angles obtained can then be used, together with the overcoring strains, to compute the complete in situ state of stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    5
    Citations
    NaN
    KQI
    []