Boron Precursor-Dependent Evolution of Differently Emitting Carbon Dots
2017
Attention has been directed toward electron-deficient boron doping in carbon dots (CDs) with the expectation of revealing new photophysical aspects in accordance with varying amounts of boron content. It has been emphatically shown that boron uptake in CDs varies with different boron precursors evolving altered emissive CDs. Boron doping in CDs causes definite surface defect due to the generation of electron-deficient states. Modified hydrothermal treatment of a mixture of ascorbic acid (AA) and different boron precursor compounds (borax/boric acid/sodium borate/sodium borohydride) produces different kinds of boron-doped CDs (BCDs). These BCDs (<6 nm) differ in size, emission maxima (∼15 nm), and fluorescence intensity but carry unchanged excitation maxima (365 nm). These differences are related to the nature of boron precursor compounds. The most fluorescing BCD (quantum yield ≈ 5%) is identified from the borax-mediated reaction and is used for the detection of Fe(III) on a nanomolar level in water via t...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
58
References
33
Citations
NaN
KQI