Imidazole-pyridine bioisosterism: comparison of the inotropic activities of pyridine- and imidazole-substituted 6-phenyldihydropyridazinone cardiotonics

1988 
: We previously reported the structure-activity relationships (SAR), molecular structure, pharmacology, and molecular pharmacology of indolidan (LY195115), a potent and long-acting dihydropyridazinone cardiotonic. Our 6-phenyldihydropyridazinone SAR studies revealed the critical nature of the substituent at the para position of the phenyl ring. An acetamido substituent provided potent cardiotonic activity and we hypothesized that this may relate to the ability of the acetamide carbonyl to function as a hydrogen-bond acceptor. To further address this question, we prepared 15 (4,5-dihydro-6-[4-(3-pyridinyl)phenyl]-3(2H)-pyridazinone), the 3-pyridyl analogue of imazodan. As is the case with imazodan, this (pyridylphenyl)dihydropyridazinone possesses a nitrogen three atoms removed from the phenyl ring, but the molecular framework through which it is attached to the phenyldihydropyridazinone moiety is altered. After iv administration to pentobarbital-anesthetized dogs, inotropic ED50 values of 15, imazodan, and the parent compound, 4,5-dihydro-6-phenyl-3(2H)-pyridazinone, were 19.4, 50.1, and 6330 micrograms/kg, respectively. Thus, 15 is over 2-fold more potent than imazodan and 326-fold more potent than the parent, unsubstituted compound. These data, as well as data obtained with other congeners, are consistent with the hypothesis that a suitably oriented hydrogen-bond-acceptor site contributes to the high degree of inotropic potency observed with these dihydropyridazinone cardiotonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    14
    Citations
    NaN
    KQI
    []