Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation

2016 
The rapid growth of structural information for G-protein-coupled receptors (GPCRs) has led to a greater understanding of their structure, function, selectivity, and ligand binding. Although novel ligands have been identified using methods such as virtual screening, computationally driven lead optimization has been possible only in isolated cases because of challenges associated with predicting binding free energies for related compounds. Here, we provide a systematic characterization of the performance of free-energy perturbation (FEP) calculations to predict relative binding free energies of congeneric ligands binding to GPCR targets using a consistent protocol and no adjustable parameters. Using the FEP+ package, first we validated the protocol, which includes a full lipid bilayer and explicit solvent, by predicting the binding affinity for a total of 45 different ligands across four different GPCRs (adenosine A2AAR, β1 adrenergic, CXCR4 chemokine, and δ opioid receptors). Comparison with experimental b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    77
    Citations
    NaN
    KQI
    []