Specifying the unitary evolution of a qudit for a general nonstationary Hamiltonian via the generalized Gell-Mann representation
2020
Optimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a $d$-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evolution of a qudit $(d\geq2)$ in terms of the Bloch-like vector space and specify how in a general case this formalism is related to finding time-dependent parameters in the exponential representation of the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general formalism to a qubit case $(d=2)$, we specify the unitary evolution of a qubit via the evolution of a unit vector in $\mathbb{R}^{4}$ and this allows us to derive the precise analytical expression of the qubit unitary evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression includes the qubit solutions known in the literature only as particular cases.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
16
References
0
Citations
NaN
KQI