Comparison of progenitor mass estimates for the type IIP SN 2012A

2013 
We present the one-year long observing campaign of SN 2012A which exploded in the nearby (9.8 Mpc) irregular galaxy NGC 3239. The photometric evolution is that of a normal Type IIP supernova, but the plateau is shorter and the luminosity not as constant as in other supernovae of this type. The absolute maximum magnitude, with M-B = -16.23 +/- 0.16 mag, is close to the average for SN IIP. Thanks also to the strong UV flux in the early phase, SN 2012A reached a peak luminosity of about 2 x 10(42) erg s(-1), which is brighter than those of other SNe with a similar Ni-56 mass. The latter was estimated from the luminosity in the exponential tail of the light curve and found to be M(Ni-56) = 0.011 +/- 0.004 M-circle dot, which is intermediate between standard and faint SN IIP. The spectral evolution of SN 2012A is also typical of SN IIP, from the early spectra dominated by a blue continuum and very broad (similar to 10(4) km s(-1)) Balmer lines, to the late-photospheric spectra characterized by prominent P-Cygni features of metal lines (Fe ii, Sc ii, Ba ii, Ti ii, Ca ii, Na i D). The photospheric velocity is moderately low, similar to 3 x 10(3) km s(-1) at 50 d, for the low optical depth metal lines. The nebular spectrum obtained 394 d after the shock breakout shows the typical features of SNe IIP and the strength of the [O i] doublet suggests a progenitor of intermediate mass, similar to SN 2004et (similar to 15 M-circle dot). A candidate progenitor for SN 2012A has been identified in deep, pre-explosion K-'-band Gemini North Near-InfraRed Imager and Spectrometer images, and found to be consistent with a star with a bolometric magnitude -7.08 +/- 0.36 (log L/L-circle dot = 4.73 +/- 0.14 dex). The magnitude of the recovered progenitor in archival images points towards a moderate-mass 10.5(-2)(+4.5) M-circle dot star as the precursor of SN 2012A. The explosion parameters and progenitor mass were also estimated by means of a hydrodynamical model, fitting the bolometric light curve, the velocity and the temperature evolution. We found a best fit for a kinetic energy of 0.48 foe, an initial radius of 1.8 x 10(13) cm and ejecta mass of 12.5 M-circle dot. Even including the mass for the compact remnant, this appears fully consistent with the direct measurements given above.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    115
    Citations
    NaN
    KQI
    []