Enhancing Thermomechanical and Chemical Stability of Polymer Electrolyte Membranes Using Polydopamine Coated Nanocellulose

2020 
We report here an approach to enhance the chemical and thermomechanical stability of polymer electrolyte membranes without compromising proton conductivity. Multifunctional polydopamine coated nanocellulose (PNC) was prepared by oxidative polymerization of dopamine on nanocellulose fibers and subsequently incorporated in Nafion by solution blending. PNC had a very significant effect on the thermomechanical properties of Nafion showing up to 200% improvement in the storage modulus at 90 °C. The PNC network also enhanced the dimensional stability of Nafion under constant stress. The 3 wt % PNC composite membrane showed a drastic reduction in creep compliance of about 39.9% and 46.5% in Jmax at 30° and 60 °C, respectively. Free radical scavenging properties of polydopamine also helped to significantly enhance the chemical stability of Nafion, which was ascertained by accelerated degradation tests conducted in Fenton’s reagent at 70 °C over 40 days. 19F CP MAS solid state NMR, FTIR, and tensile tests on the m...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    7
    Citations
    NaN
    KQI
    []