Uptake of 26-Al and 67-Ga into brain and other tissues of normal and hypotransferrinaemic mice

1997 
Aluminium uptake from blood into tissues of control and homozygous hypotransferrinaemic (hpx/hpx) mice, following continuous intravenous infusion of Al and Ga, has been compared with that of gallium, a proposed tracer for aluminium. Al uptake into tissues of control (hpx/+ and +/+) mice occurred in the order (expressed as a space): bone 464.7ml 100g; renal cortex 102.9ml 100g; liver 13.0ml 100g; spleen 8.4ml 100g and brain 0.8ml 100g. Ga uptakes were similar in liver, spleen and brain, but smaller in the renal cortex and bone, at one-third and one-fifth of the values for Al, respectively. In the hypotransferrinaemic mice, uptake of Ga into all tissues was increased, especially in renal cortex (ninefold) and bone (twentyfold) as compared with the controls. Increases in Ga uptakes into cerebral hemisphere, cerebellum and brain stem of the hypotransferrinaemic mice were 3.8, 4.2 and 2.8 fold, respectively. Al uptake into tissues of the hypotransferrinaemic mice was similar to control values except in bone where it was three times greater. Pre-treatment of control animals with the anti-transferrin receptor antibody, RI7 208, enhanced Ga uptake in all tissues, the effect being greatest in renal cortex (tenfold) and bone (ninefold). Ga uptakes into cerebral hemisphere, cerebellum and brain stem in the mice pre-treated with RI7 208 were 6.4, 6 and 10 times greater than in untreated mice, respectively. No influence of antibody on Al uptake into mouse tissues was observed except in spleen where it was three times greater than in untreated mice. Hence, transport of aluminium and gallium into mouse tissues is not similar under all conditions. Non-transferrin mediated transport of each metal can occur into all tissues, especially in renal cortex and bone, where gallium may be a suitable marker for aluminium.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    17
    Citations
    NaN
    KQI
    []