High-throughput meta-analysis and validation of differentially expressed genes as potential biomarkers of ionizing radiation-response.

2021 
Abstract Background and purpose The high-throughput analysis of gene expression in ionizing radiation (IR)-exposed human peripheral white blood cells (WBC) has emerged as a novel method for biodosimetry markers detection. We aimed to detect IR-exposure differential expressed genes (DEGs) as potential predictive biomarkers for biodosimetry and radioinduced-response. Materials and methods We performed a meta-analysis of raw data from public microarrays of ex vivo low linear energy transfer-irradiated human peripheral WBC. Functional enrichment and transcription factors (TF) detection from resulting DEGs were assessed. Six selected DEGs among studies were validated by qRT-PCR on mRNA from human peripheral blood samples from nine healthy human donors 24 h after ex vivo X-rays-irradiation. Results We identified 275 DEGs after IR-exposure (parameters: |lfc| ≥ 0.7, q value Conclusion These six DEGs show potential to be proposed as candidates for IR-exposure biomarkers, considering their observed molecular radioinduced-response. Among them, TCF4, bioinformatically detected, was validated herein as an IR-responsive gene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []