An Atmospheric Soliton Observed with Doppler Radar, Differential Absorption Lidar, and a Molecular Doppler Lidar

2008 
Abstract Airborne Leandre II differential absorption lidar (DIAL), S-band dual-polarization Doppler radar (S-Pol), and Goddard Lidar Observatory for Winds (GLOW) Doppler lidar data are used, in conjunction with surface mesonet and special sounding data, to derive the structure and dynamics of a bore and associated solitary wave train (soliton) that were generated in southwestern Kansas during the International H20 Project (IHOP_2002). Vertical cross sections of S-Pol reflectivity, S-Pol radial velocity, and DIAL water vapor mixing ratio show a stunning amplitude-ordered train of trapped solitary waves. DIAL data reveal that the leading wave in the soliton increasingly flattened with time as the soliton dissipated. A method is developed for using the GLOW Doppler winds to obtain the complex two-dimensional vertical circulation accompanying the dissipating soliton. The results show multiple circulations identical in number to the oscillations seen in the S-Pol and DIAL data. The leading updraft occurred pre...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    31
    Citations
    NaN
    KQI
    []