Towards Optimal Depth Reductions for Syntactically Multilinear Circuits

2019 
We show that any $n$-variate polynomial computable by a syntactically multilinear circuit of size $\operatorname{poly}(n)$ can be computed by a depth-$4$ syntactically multilinear ($\Sigma\Pi\Sigma\Pi$) circuit of size at most $\exp\left({O\left(\sqrt{n\log n}\right)}\right)$. For degree $d = \omega(n/\log n)$, this improves upon the upper bound of $\exp\left({O(\sqrt{d}\log n)}\right)$ obtained by Tavenas~\cite{T15} for general circuits, and is known to be asymptotically optimal in the exponent when $d < n^{\epsilon}$ for a small enough constant $\epsilon$. Our upper bound matches the lower bound of $\exp\left({\Omega\left(\sqrt{n\log n}\right)}\right)$ proved by Raz and Yehudayoff~\cite{RY09}, and thus cannot be improved further in the exponent. Our results hold over all fields and also generalize to circuits of small individual degree. More generally, we show that an $n$-variate polynomial computable by a syntactically multilinear circuit of size $\operatorname{poly}(n)$ can be computed by a syntactically multilinear circuit of product-depth $\Delta$ of size at most $\exp\left(O\left(\Delta \cdot (n/\log n)^{1/\Delta} \cdot \log n\right)\right)$. It follows from the lower bounds of Raz and Yehudayoff (CC 2009) that in general, for constant $\Delta$, the exponent in this upper bound is tight and cannot be improved to $o\left(\left(n/\log n\right)^{1/\Delta}\cdot \log n\right)$.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []