Dynamics in cyanobacterial communities from a relatively stable environment in an urbanised area (ambient springs in Central Poland)

2017 
Abstract Ambient springs are often cited as an example of an ecosystem with stable environmental conditions. A static biotope fosters the development of constant communities with a stable qualitative and relatively stable quantitative structure. Two years of studying cyanobacteria in different microhabitats of the rheocrenic and limnocrenic ambient springs located in urban areas showed that there is a high degree of cyanobacterial diversity and spatial and seasonal dynamics in communities. Spatial heterogeneity in relation to the type of spring and the type of microhabitat is reflected not only by a change in the quantitative structure (the number of species and their biomass), but also by a change in the composition of species. Seasonal changes depended on the type of spring and the type of microhabitat, where weather conditions influenced the communities by different degrees. Cyanobacterial communities of limnocrenes were more diverse in terms of composition and biomass, but they revealed a low seasonal dynamic in contrast to the communities of rheocrenes. The classification of springs based on their environmental conditions revealed that some springs were similar. The resemblance stemmed from the origin of human impact, which was reflected to a high degree in changes in the natural hydrochemical conditions of the springs. For the purpose of understanding which environmental factors had the greatest influence on cyanobacterial communities, a BIO-ENV procedure was performed. The procedure revealed that of most importance was a group of ions not related to the nature of the spring environment – NH 4 + , NO 2 − , NO 3 − , and PO 4 3 − . The presence of these ions in groundwater was a result of direct and indirect human activity in the area of aquifers. The dynamics in communities in the studied springs were accelerated by human impact and weather conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    7
    Citations
    NaN
    KQI
    []