Scalable Gaussian Processes for Predicting the Properties of Inorganic Glasses with Large Datasets

2020 
Gaussian process regression (GPR) is a useful technique to predict composition--property relationships in glasses as the method inherently provides the standard deviation of the predictions. However, the technique remains restricted to small datasets due to the substantial computational cost associated with it. Here, using a scalable GPR algorithm, namely, kernel interpolation for scalable structured Gaussian processes (KISS-GP) along with massively scalable GP (MSGP), we develop composition--property models for inorganic glasses based on a large dataset with more than 100,000 glass compositions, 37 components, and nine important properties, namely, density, Young's, shear, and bulk moduli, thermal expansion coefficient, Vickers' hardness, refractive index, glass transition temperature, and liquidus temperature. Finally, to accelerate glass design, the models developed here are shared publicly as part of a package, namely, Python for Glass Genomics (PyGGi).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    3
    Citations
    NaN
    KQI
    []