Wide-area fault location based on optimal deployment of the traveling wave recorders

2016 
Summary With the development of wide-area measurement technology, it is possible to synchronously obtain the traveling waves from different measuring points in a complex power grid. Considering fault-generated traveling wave transmits along the shortest path in the power grid and timestamps of wave fronts can be acquired by phase-mode transformation and wavelets, this paper proposes an optimal deployment scheme of traveling wave recorders (TWR) in the power grid based on the extended double-end fault-location method. Then the fault-location methodology is presented. It is critical to guarantee that the double-end method is applied to the power grid and recognizes the specialized measuring combinations preciously and quickly, and the fault can be located consequently wherever it occurs. At last, fault-location accuracy is improved by the correction approach. All simulations are carried out in PSCAD/EMTDC, and the proposed procedure is applied to the IEEE 30& 57-bus test system to exam its validation. The results show that it can accurately locate a fault with 13 TWRs in IEEE 30-bus test system and 16 TWRs in IEEE 57-bus test system, and absolute error is less than 20 m. Copyright © 2015 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    9
    Citations
    NaN
    KQI
    []