A genome-wide algal mutant library reveals a global view of genes required for eukaryotic photosynthesis

2018 
Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular organisms that complement the use of multicellular plants by enabling higher-throughput studies. Here, we generated a genome-wide, indexed library of mapped insertion mutants for the flagship unicellular alga Chlamydomonas reinhardtii (Chlamydomonas hereafter). The 62,389 mutants in the library, covering 83% of nuclear, protein-coding genes, are available to the community. Each mutant contains unique DNA barcodes, allowing the collection to be screened as a pool. We leveraged this feature to perform a genome-wide survey of genes required for photosynthesis, which identified 303 candidate genes. Characterization of one of these genes, the conserved predicted phosphatase CPL3, showed it is important for accumulation of multiple photosynthetic protein complexes. Strikingly, 21 of the 43 highest-confidence genes are novel, opening new opportunities for advances in our understanding of this biogeochemically fundamental process. This library is the first genome-wide mapped mutant resource in any unicellular photosynthetic organism, and will accelerate the characterization of thousands of genes in algae, plants and animals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    2
    Citations
    NaN
    KQI
    []