Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide.

2013 
Abstract A major characteristic of Alzheimer's disease is the presence of amyloid beta (Aβ) oligomers and aggregates in the brain. Aβ oligomers interact with the neuronal membrane inducing perforations, causing an influx of calcium ions and increasing the release of synaptic vesicles that leads to a delayed synaptic failure by vesicle depletion. Here, we identified a neuroprotective pentapeptide anti-Aβ compound having the sequence of the glycine zipper region of the C-terminal of Aβ (G 33 LMVG 37 ). Docking and Forster resonance energy transfer experiments showed that G 33 LMVG 37 interacts with Aβ at the C-terminal region, which is important for Aβ association and insertion into the lipid membrane. Furthermore, this pentapeptide interfered with Aβ aggregation, association, and perforation of the plasma membrane. The synaptotoxicity induced by Aβ after acute and chronic applications were abolished by G 33 LMVG 37 . These results provide a novel rationale for drug development against Alzheimer's disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    33
    Citations
    NaN
    KQI
    []