Antiviral activity of proteasome inhibitors in herpes simplex virus-1 infection: role of nuclear factor-kappaB.

2006 
Background: Herpes simplex virus type 1 (HSV-1) is a potent inducer of nuclear factor-κB (NF-κB), a cellular transcription factor with a crucial role in promoting inflammation and controlling cell proliferation and survival. Objectives: On the basis of the recent demonstration that HSV-1-induced NF-κB is actively recruited to κB-binding sites in the HSV-1 infected-cell protein 0 (ICP0) promoter enhancing viral transcription and replication, we investigated the effect of proteasome inhibitors MG132, MG115 and epoxomicin, which block NF-κB function by preventing the degradation of the inhibitory proteins IκBα, on HSV-1-induced NF-κB activation and viral replication. Methods: Antiviral activity of proteasome inhibitors was analysed in HSV-1-infected HEp2 cells by determining infective virus titres by CPE50%, viral RNA synthesis by RT-PCR, and viral protein synthesis by immunoblot analysis or immunofluorescence. ICP0 transcription was studied in transient transfection experiments using the ICP0 promoter-luciferase IE1-Luc construct. IκBα degradation and NF-κB activity were determined by immunoblot analysis and EMSA, respectively. Results: Proteasome inhibitors were found to prevent HSV-1-induced NF-κB activation in the early phase of infection. Block of virus-induced NF-κB activation resulted in inhibiting HSV-1 ICP0 gene expression, in decreasing the level of immediate-early and late viral proteins, and ultimately in greatly suppressing viral replication. The antiviral effect was lost if treatment was started after NF-κB activation, and appeared to be independent of the HSV-1-induced activation of the JNK pathway. Conclusions: Proteasome inhibitors possess NF-κBdependent antiherpetic activity. The results described further identify the IKK/NF-κB pathway as a suitable target for novel antiherpetic drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    39
    Citations
    NaN
    KQI
    []