A PHYSICAL APPROACH TO THE IDENTIFICATION OF HIGH-Z MERGERS: MORPHOLOGICAL CLASSIFICATION IN THE STELLAR MASS DOMAIN

2015 
At z ≳ 1, the distinction between merging and “normal” star-forming galaxies based on single band morphology is often hampered by the presence of large clumps which result in a disturbed, merger-like appearance even in rotationally supported disks. In this paper we discuss how a classification based on canonical, non-parametric structural indices measured on resolved stellar mass maps, rather than on single-band images, reduces the misclassification of clumpy but not merging galaxies. We calibrate the mass-based selection of mergers using the MIRAGE hydrodynamical numerical simulations of isolated and merging galaxies which span a stellar mass range of 109.8–1010.6 M⊙ and merger ratios between 1:1–1:6.3. These simulations are processed to reproduce the typical depth and spatial resolution of observed Hubble Ultra Deep Field (HUDF) data. We test our approach on a sample of real galaxies with kinematic classification into disks or mergers and on ∼100 galaxies in the HUDF field with photometric/spectroscopic redshift between 1.5 ≤ z ≤ 3 and M > 109.4 M⊙. We find that a combination of the asymmetry AMASS and M20, MASS indices measured on the stellar mass maps can efficiently identify real (major) mergers with ≲20% contamination from clumpy disks in the merger sample. This mass-based classification cannot be reproduced in star-forming galaxies by H-band measurements alone, which instead result in a contamination from clumpy galaxies which can be as high as 50%. Moreover, we find that the mass-based classification always results in a lower contamination from clumpy galaxies than an H-band classification, regardless of the depth of the imaging used (e.g., CANDELS versus HUDF).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    151
    References
    33
    Citations
    NaN
    KQI
    []