A comprehensive nonlinear dynamic model for ball screw feed system with rolling joint characteristics

2021 
Modern tendency of machine tools design requires more accurate model to predict the system dynamics, in order to anticipate its interaction with machining process. In this paper, a comprehensive dynamic model of ball screw feed system (BSFS) considering nonlinear kinematic joints is introduced to investigate the varying dynamic characteristics when worktable is subjected to combined load from six directions. The load–deformation relationship of each kinematic joint is dealt with a set of translational and angular spring elements. The nonlinear restoring force function of each joint involving coupling displacement is calculated. Based on the lumped mass method, the analytical 18-DOF dynamic equation is formulated by the analysis of the interaction force between joints. Model verification tests are conducted. The worktable response exhibits the abundant and fascinating nonlinear phenomena arising in nonlinear joint and coupling effect. The nonlinear behavior behaves significant difference owing to the variations of excitation, platform position, screw length, preload and damping of joints. Thus, the model is promising for comprehension of machine dynamic behavior and for development of sophisticated control strategy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []