Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates lung injury during mechanical ventilation

2019 
During mechanical ventilation, injurious biophysical forces exacerbate lung injury. These forces disrupt alveolar capillary barrier integrity, trigger proinflammatory mediator release, and differentially regulate genes and non-coding oligonucleotides such as microRNAs. In this study, we identify miR-146a as a mechanosensitive microRNA in alveolar macrophages that has therapeutic potential to mitigate lung injury during mechanical ventilation. We used humanized in-vitro systems, mouse models, and biospecimens from mechanically ventilated patients to elucidate the expression dynamics of miR-146a that might be required to decrease lung injury during mechanical ventilation. We found that the endogenous increase in miR-146a following injurious was relatively modest and not sufficient to prevent lung injury. However, when miR-146a was highly overexpressed using a nanoparticle-based delivery platform in vivo, it was sufficient to prevent lung injury. These data indicate that the endogenous increase in microRNA-146a during MV is a compensatory response that only partially limits VILI and that nanoparticle delivery approaches that significantly over-express microRNA-146a in AMs is an effective strategy for mitigating VILI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []