Post-Training BatchNorm Recalibration.
2020
We revisit non-blocking simultaneous multithreading (NB-SMT) introduced previously by Shomron and Weiser (2020). NB-SMT trades accuracy for performance by occasionally "squeezing" more than one thread into a shared multiply-and-accumulate (MAC) unit. However, the method of accommodating more than one thread in a shared MAC unit may contribute noise to the computations, thereby changing the internal statistics of the model. We show that substantial model performance can be recouped by post-training recalibration of the batch normalization layers' running mean and running variance statistics, given the presence of NB-SMT.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
2
Citations
NaN
KQI