Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system

2017 
Thermometry using laser-induced grating spectroscopy (LIGS) is reported using a high-repetition rate laser system, extending the technique to allow time-resolved measurements of gas dynamics. LIGS signals were generated using the second harmonic output at 532 nm of a commercially available high-repetition rate Nd:YAG laser with nitrogen dioxide as molecular seed. Measurements at rates up to 10 kHz were demonstrated under static cell conditions. Transient temperature changes of the same gas contained in a cell subjected to rapid compression by injection of gas were recorded at 1 kHz to derive the temperature evolution of the compressed gas showing temperature changes of 50 K on a time-scale of 0.1 s with a measurement precision of 1.4%. The data showed good agreement with an analytical thermodynamic model of the compression process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    19
    Citations
    NaN
    KQI
    []