Effect of TiO 2 particle and pore size on DSSC efficiency

2020 
In this work, we report the preparation of TiO2 nanoparticles with a high surface area, from 120 to 168 m2 g−1 by the hydrothermal-microemulsion route and hydrothermal temperature effect over particle size, porosity, and photovoltaic parameter. The TiO2 samples were characterized by Raman, BET, TEM, SEM-FE, I–V curves, and EIS. The increase of hydrothermal temperature correlates with particle and pore size. Although when the synthesis temperature was 250 °C, the surface area presents an unexpected decrease of c.a. 28%. TiO2 samples were employed as thin-film photo-anodes for dye-sensitized solar cell (DSSC) solar cells. Photovoltaic results showed that the sample prepared at 250 °C presented the more suitable textural properties for the DSSC application. The prepared TiO2 materials with a particle size of 6.93 ± 0.59 nm and anatase crystalline phase favor electron transport and diffusion of electrolyte species, which directly impact in solar cell efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    3
    Citations
    NaN
    KQI
    []