Tverberg-Type Theorems for Matroids: A Counterexample and a Proof

2019 
Barany, Kalai, and Meshulam recently obtained a topological Tverberg-type theorem for matroids, which guarantees multiple coincidences for continuous maps from a matroid complex into ℝd, if the matroid has sufficiently many disjoint bases. They make a conjecture on the connectivity of k-fold deleted joins of a matroid with many disjoint bases, which would yield a much tighter result — but we provide a counterexample already for the case of k = 2, where a tight Tverberg-type theorem would be a topological Radon theorem for matroids. Nevertheless, we prove the topological Radon theorem for the counterexample family of matroids by an index calculation, despite the failure of the connectivity-based approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []