Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

2004 
Recently, electrical resistivity (ER) measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's). In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s) and ER changes as a function of the strain (e). A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour) and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    5
    Citations
    NaN
    KQI
    []