Intracellular Transport of Human Immunodeficiency Virus Type 1 Genomic RNA and Viral Production Are Dependent on Dynein Motor Function and Late Endosome Positioning

2009 
Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    71
    Citations
    NaN
    KQI
    []