Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta.

2015 
Custom-designed nucleases can enable precise plant genome editing by catalyzing DNA-breakage at specific targets to stimulate targeted mutagenesis or gene replacement. The CRISPR-Cas system, with its target-specifying RNA molecule to direct the Cas9 nuclease, is a recent addition to existing nucleases that bind and cleave the target through linked protein domains (e.g. TALENs and zinc-finger nucleases). We have conducted a comparative study of these different types of custom-designed nucleases and we have assessed various components of the CRISPR-Cas system. For this purpose, we have adapted our previously reported assay for cleavage-dependent luciferase gene correction in Nicotiana benthamiana leaves (Johnson et al. in Plant Mol Biol 82(3):207–221, 2013). We found that cleavage by CRISPR-Cas was more efficient than cleavage of the same target by TALENs. We also compared the cleavage efficiency of the Streptococcus pyogenes Cas9 protein based on expression using three different Cas9 gene variants. We found significant differences in cleavage efficiency between these variants, with human and Arabidopsis thaliana codon-optimized genes having the highest cleavage efficiencies. We compared the activity of 12 de novo-designed single synthetic guide RNA (sgRNA) constructs, and found their cleavage efficiency varied drastically when using the same Cas9 nuclease. Finally, we show that, for one of the targets tested with our assay, we could induce a germinally-transmitted deletion in a repeat array in A. thaliana. This work emphasizes the efficiency of the CRISPR-Cas system in plants. It also shows that further work is needed to be able to predict the optimal design of sgRNAs or Cas9 variants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    55
    Citations
    NaN
    KQI
    []