Probing Surface-Bound Atoms with Quantum Nanophotonics.

2020 
Quantum control of atoms at ultra-short distances from surfaces would open a new paradigm in quantum optics and offer a novel tool for the investigation of near-surface physics. Here, we investigate the motional states of atoms that are bound weakly to the surface of a hot optical nanofiber with optimized mechanical properties. We theoretically demonstrate that these states are quantized despite phonon-induced decoherence. We further show that it is possible to influence their properties with additional nanofiber-guided light fields and suggest heterodyne fluorescence spectroscopy to probe the spectrum of the quantized atomic motion. Extending the optical control of atoms to smaller atom-surface separations could create opportunities for quantum information processing and instigate the convergence of surface physics, quantum optics, and the physics of cold atoms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    1
    Citations
    NaN
    KQI
    []