Electron radiation effects on the structural and electrical properties of MoS2 field effect transistors
2019
: The effects of space radiation on the structural and electrical properties of MoS2 field effect transistors (FETs) were investigated. The 1 MeV electronically equivalent International Space Station (ISS) track was used to apply fluence equivalent to the orbital for 10 (1.0 × 1012 cm-2) and 30 years (3.0 × 1012 cm-2) using the AP8 and AE8 models. X-ray photoelectron spectroscopy (XPS), Raman and photoluminescence (PL) spectra were recorded before and after irradiation. Electron irradiation produced strong desulfurization effects in MoS2 FETs. The PL spectra before and after irradiation did not change significantly, while the [Formula: see text] and A1g Raman modes were red- and blue-shifted, respectively. The XPS results demonstrated a strong desulfurization effect of the electron beam on MoS2. This reduction indicates a much higher amount of irradiation-induced S vacancies compared to Mo vacancies. The electrical characteristics of the device were measured before and after irradiation. The increase in the channel leakage current after irradiation was attributed to the oxide trapping positive charges. MoS2 FETs irradiated by the electron-beam demonstrated a decreased current. This phenomenon can be attributed to the combination of the states at the SiO2/MoS2 interfaces and Coulomb scattering. Our study provides a deeper understanding of the influence of 1 MeV electron-beam irradiation on MoS2-based nano-electronic devices for future space applications.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
5
Citations
NaN
KQI