Cutting Pattern Identification for Coal Mining Shearer through Sound Signals Based on a Convolutional Neural Network

2018 
Recently, sound-based diagnosis systems have been given much attention in many fields due to the advantages of their simple structure, non-touching measurement style, and low-power dissipation. In order to improve the efficiency of coal production and the safety of the coal mining process, accurate information is always essential. It is indicated that the sound signal produced during the cutting process of the coal mining shearer contains much cutting pattern identification information. In this paper, the original acoustic signal is first collected through an industrial microphone. To analyze the signal deeply, an adaptive Hilbert–Huang transform (HHT) was applied to decompose the sound to several intrinsic mode functions (IMFs) to subsequently acquire 1024 Hilbert marginal spectrum points. The 1024 time-frequency nodes were reorganized as a 32 × 32 feature map. Moreover, the LeNet-5 convolutional neural network (CNN), with three convolution layers and two sub-sampling layers, was used as the cutting pattern recognizer. A simulation example, with 10,000 training samples and 2000 testing samples, was conducted to prove the effectiveness of the proposed method. Finally, 1971 testing sound series were recognized accurately through the trained CNN and the proposed method achieved an identification rate of 98.55%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    5
    Citations
    NaN
    KQI
    []