Recent advancement in haze removal approaches

2021 
Haze and fog are big reasons for road accidents. The haze occurrence in the air lowers the images quality captured by visible camera sensors. Haze brings inconvenience to numerous computer vision applications as it diminishes the scene visibility. Haze removal techniques recuperate the color and scene contrast. These haze removal techniques are extensively utilized in numerous applications like outdoor surveillance, object detection, consumer electronics, etc. Haze removal is commonly performed under the physical degradation model, which requires a solution of an ill-posed inverse issue. Different dehazing algorithms was recently proposed to relieve this difficulty and has acknowledged a great deal of consideration. Dehazing is basically accomplished through four major steps: hazy images acquisition process, estimation process (atmospheric light, transmission map, scattering phenomenon, and visibility or haze level), enhancement process (improved visibility level, reduce haze or noise level), restoration process (restore enhanced image, image reconstruction). This four-step dehazing process makes it possible to provide a step-by-step approach to the complex solution of the ill-posed inverse problem. Our detailed survey and experimental analysis on different dehazing methods that will help readers understand the effectiveness of the individual step of the dehazing process and will facilitate development of advanced dehazing algorithms. The overall objective of this review paper is to explore the various methods for efficiently removing the haze and short comings of the earlier presented techniques used in the revolutionary era of image processing applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    149
    References
    0
    Citations
    NaN
    KQI
    []