Adsorption, Chemical Enhancement, and Low-Lying ExcitedStates of p ‑Methylbenzenethiol on Silver andGold Nanoparticle Surfaces: A Surface Enhanced Raman Spectroscopyand Density Functional Theory Study

2019 
Adsorption and chemical enhancement of p-methylbenzenethiol (PMBT) on silver and gold nanoparticle surfaces have been studied using surface enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculations. In normal Raman spectra, the Raman intensity of the molecule is sensitive to methyl substitution at the para-position. DFT calculations for the Raman spectrum of PMBT reproduces well the Raman spectrum in nonpolar solution relative to PMBT in powder. This accords with the order of the PMBT molecules in the solid. The SERS results of PMBT adsorbed on Au and Ag nanoparticles indicate that the Raman intensity in the low-wavenumber region increases with increasing excitation wavelength. The electronic structures of low-lying excited states have been explored for this increase in different PMBT-S-metal cluster complexes. DFT results indicate that low-energy excited states are in fact present and originate from two types of excitations, one localized at the sulfur-silver/gold bonding region...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    7
    Citations
    NaN
    KQI
    []