Characterizing and Modeling Power and Energy for Extreme-Scale In-Situ Visualization

2017 
Plans for exascale computing have identified power and energy as looming problems for simulations running at that scale. In particular, writing to disk all the data generated by these simulations is becoming prohibitively expensive due to the energy consumption of the supercomputer while it idles waiting for data to be written to permanent storage. In addition, the power cost of data movement is also steadily increasing. A solution to this problem is to write only a small fraction of the data generated while still maintaining the cognitive fidelity of the visualization. With domain scientists increasingly amenable towards adopting an in-situ framework that can identify and extract valuable data from extremely large simulation results and write them to permanent storage as compact images, a large-scale simulation will commit to disk a reduced dataset of data extracts that will be much smaller than the raw results, resulting in a savings in both power and energy. The goal of this paper is two-fold: (i) to understand the role of in-situ techniques in combating power and energy issues of extreme-scale visualization and (ii) to create a model for performance, power, energy, and storage to facilitate what-if analysis. Our experiments on a specially instrumented, dedicated 150-node cluster show that while it is difficult to achieve power savings in practice using in-situ techniques, applications can achieve significant energy savings due to shorter write times for in-situ visualization. We present a characterization of power and energy for in-situ visualization; an application-aware, architecturespecific methodology for modeling and analysis of such in-situ workflows; and results that uncover indirect power savings in visualization workflows for high-performance computing (HPC).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    5
    Citations
    NaN
    KQI
    []