Experimental Study on the Effect of Heat-Retaining and Diversion Facilities on Thermal Discharge from a Power Plant
2020
In order to reduce the influence of thermal discharge from the power plant on the surrounding water environment and the operation efficiency of the power plant, a distorted physical model was presented and applied to Huadian Kemen Power Plant for studying heat transport and analyzing the effects of heat-retaining and diversion facilities near the intake/outlet on the thermal discharge for six scenarios. Field investigations were also used to validate the model. This study is unique as it is the first to elaborate on the impact of heat-retaining and diversion facilities on thermal discharge. The results indicate that the construction of heat-retaining and diversion facilities can decrease the excess temperature at intake to meet the intake requirement and improve the distribution of low temperature rise, but the area of high temperature rise has an increase. When the heat-retaining wall and diversion dike were constructed, the maximum intake temperature rise of Phase III decreased significantly by 1.0–1.3 °C with an average decrease of 0.2 °C, and the maximum value of Phase I and II was reduced by 0.3 °C with little mean change. A comparative experiment with different construction heights was also conducted. Result analysis shows that when the crest elevation was reduced from 3 to 2 m, the influence on the intake temperature rise of Phase I and II could be ignored, and the average temperature rise of Phase III only had an increase of 0.1 °C, suggesting that constructions with 2 m play an effective role in reducing heat return to the intake.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
0
Citations
NaN
KQI