Fractional robust adaptive decoupled control for attenuating creep, hysteresis and cross coupling in a parallel piezostage

2021 
Abstract Parallel micropositioning piezostages are widely used in the micro-/nano-manipulation applications, but also subject to the nonlinear disturbances, like hysteresis, creep and cross-coupling effects. In this paper, a new fractional robust adaptive decoupled control (FRADC) is synthesized for a six-axis parallel micropositioning piezostage to improve the positioning accuracy. The proposed FRADC contains three intuitional terms: (1) a decoupling term that alleviates the coupled motions among different axes, making the controller implementation more convenient and efficient; (2) a feedforward compensation term based on a fractional normalized Bouc-Wen (FONBW) model, compensating for the rate-dependent hysteresis effect induced by the piezoelectric actuators; (3) a feedback model reference adaptive control (MRAC) term with fractional proportional-plus-integral-type updating rules that suppresses the creep effect, parameters uncertainty and external disturbances, further enhancing the robustness and positioning accuracy. The stability of the closed-loop system is analyzed in theory. The effectiveness of the proposed FRADC is experimentally validated by comparing with the standalone inverse-FONBW-based feedforward control, the standalone feedback fractional MRAC, and the traditional integer-order control methods. Results demonstrate that the proposed FRADC can guarantee higher positioning accuracy for the piezostage system in wider control bandwidth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []