A Rayleigh Quotient-Based Recursive Total-Least-Squares Online Maximum Capacity Estimation for Lithium-Ion Batteries

2015 
The maximum capacity, the amount of maximal electric charge that a battery can store, not only indicates the state of health, but also is required in numerous methods for state-of-charge estimation. This paper proposes an alternative approach to perform online estimation of the maximum capacity by solving the recursive total-least-squares (RTLS) problem. Different from prior art, the proposed approach poses and solves the RTLS as a Rayleigh quotient optimization problem. The Rayleigh quotient-based approach can be readily generalized to other parameter estimation problems including impedance estimation. Compared with other capacity estimation methods, the proposed algorithm enjoys the advantages of existing RTLS-based algorithms for instance, low computation, simple implementation, and high accuracy, and thus is suitable for use in real-time embedded battery management systems. The proposed method is compared with existing methods via simulations and experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    30
    Citations
    NaN
    KQI
    []