Variations in Winter Surface Temperature of the Purog Kangri Ice Field, Qinghai–Tibetan Plateau, 2001–2018, Using MODIS Data

2020 
In the context of global warming, the land surface temperature (LST) from remote sensing data is one of the most useful indicators to directly quantify the degree of climate warming in high-altitude mountainous areas where meteorological observations are sparse. Using the daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A1 V6) after eliminating pixels that might be contaminated by clouds, this paper analyzes temporal and spatial variations in the mean LST on the Purog Kangri ice field, Qinghai–Tibetan Plateau, in winter from 2001 to 2018. There was a large increasing trend in LST (0.116 ± 0.05 °C·a−1) on the Purog Kangri ice field during December, while there was no evident LST rising trend in January and February. In December, both the significantly decreased albedo (−0.002 a−1, based on the MOD10A1 V6 albedo product) on the ice field surface and the significantly increased number of clear days (0.322 d·a−1) may be the main reason for the significant warming trend in the ice field. In addition, although the two highest LST of December were observed in 2017 and 2018, a longer data set is needed to determine whether this is an anomaly or a hint of a warmer phase of the Purog Kangri ice field in December.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    2
    Citations
    NaN
    KQI
    []