Influence of linker molecules on charge transport through self-assembled single-nanoparticle devices.

2005 
: We investigate electrical characteristics of single-electron electrode/nanoisland/electrode devices formed by alkanedithiol assisted self-assembly. Contrary to predictions of the orthodox model for double tunnel junction devices, we find a significant ( approximately fivefold) discrepancy in single-electron charging energies determined by Coulomb blockade (CB) voltage thresholds in current-voltage measurements versus those determined by an Arrhenius analysis of conductance in the CB region. The energies do, however, scale with particle sizes, consistent with single-electron charging phenomena. We propose that the discrepancy is caused by a multibarrier junction potential that leads to a voltage divider effect. Temperature and voltage dependent conductance measurements performed outside the blockade region are consistent with this picture. We simulated our data using a suitably modified orthodox model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []