Experimental demonstration of single-shot quantum and classical signal transmission on single wavelength optical pulse.

2019 
Advances in highly sensitive detection techniques for classical coherent communication systems have reduced the received signal power requirements to a few photons per bit. At this level one can take advantage of the quantum noise to create secure communication, using continuous variable quantum key distribution (CV-QKD). In this work therefore we embed CV-QKD signals within classical signals and transmit classical data and secure keys simultaneously over 25km of optical fibre. This is achieved by using a novel coherent displacement state generator, which has the potential for being used in a wide range of quantum optical experiments. This approach removes the need for separate channels for quantum communication systems and allows reduced system bandwidth for a given communications specification. This demonstration therefore demonstrates a way of implementing direct quantum physical layer security within a conventional classical communications system, offering a major advance in term of practical and low cost implementation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []