Engineered synthetic virus-like particles and their use in vaccine delivery
2011
Engineered nanoparticles have been designed based on the self-assembling properties of synthetic coiled-coil lipopeptide building blocks. The presence of an isoleucine zipper within the lipopeptide together with the aggregating effects of an N-terminal lipid drives formation of 20-25 nm nanoparticles in solution. Biophysical studies support a model in which the lipid is buried in the centre of the nanoparticle, with 20-30 trimeric helical coiled-coil bundles radiating out into solution. A promiscuous T-helper epitope and a synthetic B-cell epitope mimetic derived from the circumsporozoite protein of Plasmodium falciparum have been linked to each lipopeptide chain, with the result that 60-90 copies of each antigen are displayed over the surface of the nanoparticle. These nanoparticles elicit strong humoral immune responses in mice and rabbits, including antibodies able to cross-react with the parasite, thereby, supporting the potential value of this delivery system in synthetic vaccine design
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
47
Citations
NaN
KQI