Legacy Arsenic Pollution of Lakes Near Cobalt, Ontario, Canada: Arsenic in Lake Water and Sediment Remains Elevated Nearly a Century After Mining Activity Has Ceased
2018
Century old mine tailings in the Cobalt and Silver Center areas are widely dispersed throughout the terrestrial and aquatic environments and contain high concentrations of arsenic. Arsenic concentrations were found to be as high as 972 μg/L in surface waters and 10,800 mg/kg in lake sediment. The mean values for arsenic in surface waters and sediment from 9 lakes directly influenced by mining activity were 431 μg/L and 1704 mg/kg, respectively, whereas in the 12 control lakes with no mining activity in their catchment had mean values of 2.2 μg/L and 11 mg/kg in their water and sediment, respectively. Lakes impacted by downstream tailing migration (n = 4) were also assessed and had intermediate concentrations of arsenic. Principal component analysis identified contaminated lakes as having different geochemical signatures than control lakes but lake sediment that was sampled below tailings in contaminated lakes, deposited pre-mining, can resemble the geochemistry of those found in control lakes. Arsenic concentrations in these samples ranged from 4.4 to 185 mg/kg, which can be considered reasonable background as these areas contained abundant mineral deposits that could naturally elevate background concentrations. Even though background concentrations are naturally elevated, the presence of arsenic-rich tailings in these lakes has prevented any natural recovery from occurring. Fe-Mn oxides at the water-sediment interface perpetually scavenge arsenic from buried tailings below and from contaminated surface waters that cause arsenic concentrations to remain enriched in the upper sediments even after tailings have been buried by lake sediment. This process has prevented recovery of the lake ecosystems even after nearly a century without mining.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
17
Citations
NaN
KQI